

Casting Emission Reduction Program

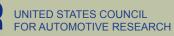
Operated by

*T***ECHNIKON** 5301 Price Avenue McClellan, CA 95652 916-929-8001 www.technikonllc.com

> US Army Contract W15QKN-05-D-0030 FY2006 Tasks WBS # 2.2.2

Particulate Matter Sampling Method Comparison **Proposed Test Plan**

1413-222 NA


May 2008

(Revised for public distribution - August 2008)

Particulate Matter Sampling Method Comparison Proposed Test Plan

Technikon # 1413-222 NA

This report has been reviewed for completeness and accuracy and approved for release by the following:

Director of Analytical		
Measurement Technologies	// <i>Original Signed//</i> Sue Anne Sheya, PhD	Data
	Sue Anne Sneya, PhD	Date
Vice President of Operations	//Original Signed//	
, lee l'restaent of operations	// <i>Original Signed//</i> George Crandell	Date

TABLE OF CONTENTS

Executive	Summary	. 1
1.0	Introduction	. 3
1.1.	Background	. 3
1.2.	CERP/Technikon Objectives	
1.3.	Report Organization	
1.4.	Study Objective	. 4
2.0	Background	. 5
2.1.	Scope of Study	. 6
Appendix	A Test Plan	11
Appendix	B Acronyms and Abbreviations	17

LIST OF FIGURES AND TABLES

Figure 1	Test Plan Flowchart	9)
----------	---------------------	---	---

EXECUTIVE SUMMARY

The objective of this study is to evaluate and compare the various promulgated and proposed methods for sampling and measuring both filterable and condensable particulate matter (PM) from industrial emission points. A thorough evaluation can best be accomplished by simultaneously sampling from a single complex source using the existing EPA Method 201A for filterable particulate combined with both the promulgated Method 202 and the modified "dry" Method 202 for condensable particulate, along with dilution tunnel methodologies CTM-039 and a commercial system, and comparing the results. Emissions from pouring, cooling and shakeout of digitally printed molds at the Research Foundry at Technikon, LLC will be used as the source of stack gases for the PM comparison testing.

1.0 INTRODUCTION

1.1. Background

Technikon, LLC is a privately held contract research organization located in McClellan, California, a suburb of Sacramento. Technikon offers emissions research services to industrial and government clients specializing in the metal casting and point source emissions areas. Technikon operates the Casting Emission Reduction Program (CERP). CERP is a cooperative initiative between the Department of Defense (US Army) and the United States Council for Automotive Research (USCAR). The parties to the CERP Cooperative Research and Development Agreement (CRADA) include The Environmental Leadership Council of USCAR, a Michigan partnership of Chrysler Corporation, Ford Motor Company, and General Motors Corporation; the U.S. Army Research, Development, and Engineering Command (RDECOM-ARDEC); the American Foundry Society (AFS); and the Casting Industry Suppliers Association (CISA). The US Environmental Protection Agency (US EPA) and the California Air Resources Board (CARB) also have been participants in the CERP program and rely on CERP published reports for regulatory compliance data. All published reports are available on the CERP web site at www.cerp-us.org.

1.2. CERP/Technikon Objectives

The primary objective of CERP is to evaluate materials, equipment, and processes used in the production of metal castings. Technikon's facility was developed to evaluate alternative materials and production processes designed to achieve significant air emission reductions. The facility's principal testing arena is designed to measure airborne emissions from individually poured molds. This testing facility enables the repeatable collection and evaluation of airborne emissions and associated process data.

1.3. Report Organization

This report is divided into three sections. The first section is the introductory section. Section 2.0 gives the background and summary of the methodologies used for PM collection and measurement. Appendix A contains the proposed test plan for the study, which will be conducted by Technikon under another contract.

1.4. Study Objective

The objective of this study is to evaluate and compare the various promulgated and proposed methods for sampling and measuring both filterable and condensable particulate matter from industrial stacks.

2.0 BACKGROUND

Particulate matter (PM) emissions can generally be classified as filterable or condensable, and are defined by size fraction as total PM, PM_{10} , (PM with an aerodynamic diameter of 10 micrometers or less, or $PM_{2.5}$ (PM with aerodynamic diameter of 2.5 micrometers or less). Typically, EPA's validated reference test methods for PM (EPA Methods 5 and 17) measure only material that is collected on and ahead of the filter media of a sampling device. The type and size of material collected depends upon the temperature at which the filter media is maintained. These methods collect particulate at filter temperatures of the stack or higher. As a result, these test methods only capture the non-gaseous particulate material and do not capture the vaporous material that will condense in the atmosphere. This captured material is referred to as filterable particulate matter because it is the material that can be filtered out of the gas stream at the indicated temperature.

Other methods that are similar to Methods 5 and 17 are the PM_{10} methods, Methods 201 and 201A. These methods measure in-stack PM_{10} and the difference in these sampling trains and Methods 5 and 17 is that the probe nozzle is replaced by a cyclone, which has an aerodynamic cut size of 10 µm. The methods require only that the material collected behind the cyclone up to the filter be recovered and analyzed. Some source testers recover and weigh the larger than 10 µm material that is collected in and ahead of the cyclone. The summing of this material with the material following the cyclone up to the filter will result in a value similar to Method 17. However, as with Method 17, it may not give the same results as Method 5. With Methods 201 or 201A, the results should be reported as filterable PM_{10} . If the larger than 10 µm material is added to the PM_{10} material, the results should be reported as total filterable PM, with a note that describes the sampling train.

EPA Method 202, Determination of Condensable Particulate Emissions from Stationary Sources, is the only promulgated method available to measure and quantify condensable PM (CPM) emissions. Gaseous components can be partially absorbed in the impinger solutions required in the method, and chemically react to form material counted as CPM. A modification to improve the method by eliminating the water in the impingers has been made to reduce the formation of these CPM artifacts. This method has recently been published as OTM-28.

Conditional Test Method (CTM)-039 is a dilution sampling procedure that approximates the formation of particles that form in a plume downstream of a stack as the stack gases are cooled by mixing with ambient air. CTM-039 uses a PM_{10} cyclone followed by a $PM_{2.5}$ cyclone so both size cuts can be obtained. This method provides results directly in terms of total PM_{10} and total $PM_{2.5}$. Unfortunately, this method requires extremely large and bulky sampling equipment which is expensive to operate and is vulnerable to wall losses of CPM. EPA has a second conditional test method, OTM-27, that also combines two cyclones in series, a PM_{10} cyclone followed by a $PM_{2.5}$ cyclone. The cyclones are located in the stack, as in a Method 201 or 201A train. The difference in the two methods is that CTM-039 does not have to be combined with Method 202 to obtain both filterable and condensable fractions, whereas OTM-27 does.

2.1. Scope of Study

The great interest by government and industry in solving the problem of accurately sampling and measuring condensable particulate can best be accomplished by simultaneously sampling from a single complex source using the existing Method 202, the modified "dry" Method 202 (OTM-28), and dilution tunnels and comparing the results. CERP and Technikon have provided the means for a unique opportunity to generate data that can not only provide answers to many of the existing questions regarding particulate matter method sampling, but also can provide data that will be publicly shared.

The proposed sampling scheme could encompass CTM-039, OTM-27 in combination with the standard Method 202, OTM-27 in combination with the modified Method 202 (OTM-28), and a prototype dilution sampling system currently under construction and testing by Desert Research Institute (DRI) and Baldwin Environmental, Inc (BEI).

Any or all of these methods would be used for particulate matter comparison testing on the 6" stack off of the Research Foundry Total Enclosure Hood at Technikon for pouring, cooling and shakeout of iron. Either PM_{10} or $PM_{2.5}$ cyclones or both will be used for selecting the size fraction of the filterable PM for Method 201A.

A total of 2-4 sampling devices would be run simultaneously and PM results compared.

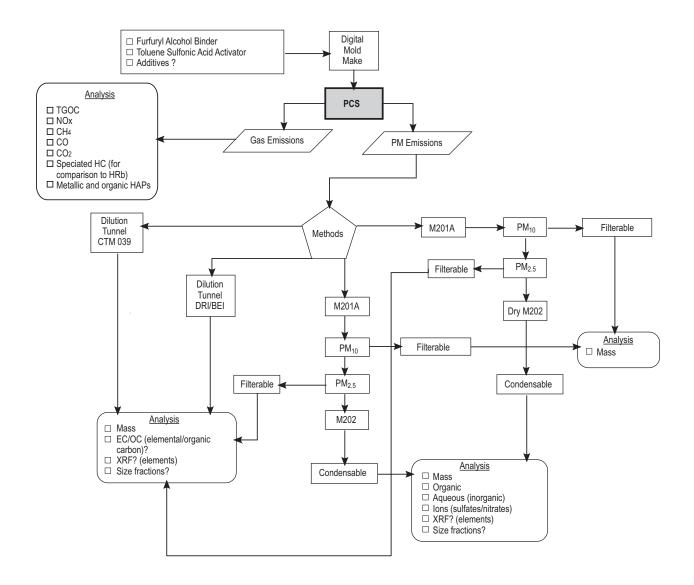
Six to eight runs of 75 - 90 minutes should be adequate to obtain both sufficient materials for accurate mass measurements and for statistical analysis.

Molds and cores could be designed to specifically produce a broad spectrum of airborne pollutants besides PM, including oxides of sulfur and nitrogen, ammonia, hydrocarbons, and inorganics. Most likely, the molds to be used will be molds produced using the ProMetal® RTC S-15 digital printer. The molds will be made using a furfuryl alcohol based binder with toluenesulfonic acid activator. This binder system will result in sulfur dioxide, hydrocarbons, and inorganic airborne emissions.

Gas analyses will be undertaken in addition to PM sampling so that gas emissions results from this test can be used as a product comparison emissions test to CERP 1412-HRb, which discussed the pouring, cooling and shakeout emissions from digitally printed 4-on gear molds.

Continuous monitoring of NO_x , total gaseous hydrocarbons, methane, CO and CO_2 can be easily conducted for all runs. In addition, anionic and cationic analyses on the impinger solutions, elemental and organic carbon analysis on the PM formed, and speciated chemical analysis on gas emissions all can easily be added to the sampling protocol.

Analyzing for generated pollutants other than PM mass could provide understanding into the formation and fate of compounds that may become condensable artifacts. Speciated sampling and conducting a mass balance of chemical species from the gas emissions and the condensate from Method 202 can accomplish this.


All gas analysis would be conducted using Technikon's existing on-line gas analyzers. PM sampling and analysis would be accomplished through a combination of existing labware and cyclones at Technikon, borrowing of the CTM-039 dilution system from EPA's sub-contractor, Mactec, and renting the DRI/BEI system.

A flowchart of the proposed testing is given in Figure 1. In this scenario, PM_{10} is analyzed gravimetrically, while $PM_{2.5}$ is analyzed gravimetrically as well as for size and chemical characterization for elemental and organic carbon fraction, and by x-ray fluorescence for inorganic elemental analysis. This same analysis would be conducted on the PM sampled

from the dilution tunnels. Condensable PM obtained from both the "dry" Method 202 impingers and the promulgated Method 202 impingers would undergo similar analysis to that of the filterable $PM_{2.5}$ with the addition of ion chromatography for the determination of artifacts in the condensable fraction. Other potential analytical options are listed in the flow chart with a following question mark.

The test plan is outlined in Appendix A.

Figure 1 Test Plan Flowchart

APPENDIX A TEST PLAN

Technikon Test Plan

page 1 of 3

	Fill-in and check all that apply	
• CONTRACT NUMBER	R: 1413 TASK NUMBER 222 DOUBLE ALPHA NA	
• SITE:	On Site at Research Foundry D Off Site at	
• DATE RANGE:	From Jun. 1, 08 to Jul. 15, 08	
• TEST OBJECTIVE:	Emissions Testing Mechanical Properties Casting Quality Comparison to <u>HRb</u>	
• PROCESSES:	Pouring Cooling Shakeout Mixing Making Storage	
• Test Type:	Baseline Product Other	
◆ METAL:	☑ Iron □ Aluminum □ Steel □ Other Alloy Pour Temp: <u>2630 ± 10</u> °F	
◆ Runs:	Number for Conditioning 0 Duration minutes Number for Testing Samples 6 Duration 75 or 90 minutes	
• PROPERTIES TO BE TESTED:	Mold Strength Moisture Content •F LOI% •F Volatiles Release Agent Binder Clay Sand Activator Other	
 Results to be Analyzed and Reported: 	Emissions: HAPs POMs Criteria Pollutants Greenhouse Gases Other PM2.5 Casting Quality: Coated Cores One Cavity All Cavities Other	
	Mechanical Properties: Tensile Strength Weight Change Flowability Compressibility Other	
• Brief Overview:	This test will measure airborne emissions from digitally printed 4-on gear molds. Gas emissions will be compared to those from Test HRb. PM filterable and condensable emissions will also be measured. Several collection and measurement methods for PM2.5 will be used simultaneously to allow a direct comparison of PM2.5 sampling methods. The methods to be used include dilution tunnels and cyclones and impingers.	
• Additional Comments:	_	

Technikon Test Plan page 2 of 3			
	Fill-in	and check all that apply	
CONTRACT NUM	івея: 1413 Тазк Numbe	ER 222 DOUBLE ALPHA	NA
	Cores	Molds	Other
• PATTERN:	Cther	Step Star Irregular Gear Other Digital	Dogbone Shakeout Flowability Other
	Number	Number <u>6</u>	Number
	Number Cavities	Number Cavities <u>4</u>	Number Cavities
	Storage Temp:°F	Storage Temp:°F Storage Age: <u>40+ hours</u>	Storage Temp:°F
	Dimensions:	Dimensions: Standard (24x24x10/10) Other	Dimensions:
• BINDER :	Cold boxWarm boxHot boxNo-bakeShellOilOtherConcentrationKatio ($\frac{P1}{P2}$)Product Name(s)	Cold boxWarm boxHot boxNo-bakeShellOilOtherOilConcentration 1.1% (BOS)Ratio $(\frac{P1}{P2})$ Product Name(s)	Cold boxWarm boxHot boxNo-bakeShellOilOtherConcentrationRatio ($\frac{P1}{P2}$)Product Name(s)
Chemistry:	Phenolic Urethane Furfuryl Alcohol Low Emission (inc. Sodium Silicate) Epoxy-Acrylic Alkaline Phenolic Ester Other	 Phenolic Urethane Furfuryl Alcohol Low Emission (inc. Sodium Silicate) Epoxy-Acrylic Alkaline Phenolic Ester Other 	 Phenolic Urethane Furfuryl Alcohol Low Emission (inc. Sodium Silicate) Epoxy-Acrylic Alkaline Phenolic Ester Other
 CATALYST: 	CO ₂ Cured SO ₂ Cured Acid Cured TEA Cured Hot Air Cured Methyl Formate Cured Concentration BOS Concentration BOR Other	CO2 Cured SO2 Cured Acid Cured TEA Cured Hot Air Cured Methyl Formate Cured Concentration BOS Concentration BOR	CO2 Cured SO2 Cured Acid Cured TEA Cured Hot Air Cured Methyl Formate Cured Concentration BOS Concentration BOR

Technikon Test Planpage 3 of 3			page 3 of 3
	Fill-in and check all that apply		
CONTRACT NUME	BER: 1413 TASK NUME	Double Alpha	NA
	Cores	Molds	Other
◆ SAND:	Greensand No-Bake Greensand No-Bake Greensand Additives to yield %LOI Product Name(s)	Greensand No-Bake Greensand No-Bake Greensand Other Additives to yield 1.0%LOI Product Name(s)	Greensand No-Bake C Other Additives to yield %LOI Product Name(s)
• Release Agent:	Concentration Application Method Product Name(s)	Concentration <u>None</u> Application Method Product Name(s)	Concentration Application Method Product Name(s)
◆ Coating:	None All Runs Conditioning Runs Only Test Runs Only Baumé Other Application Method Drying Method Product Name(s)	None All Runs Conditioning Runs Only Test Runs Only Baumé Other Application Method Drying Method Product Name(s)	

This test plan routed to or reviewed by:

- Senior Process Engineer
- Technical Director/Foundry Manager
 Director of Measurement Technologies
- Vice President of Operations •
- Applicable Steering Committee Members •

APPENDIX B ACRONYMS AND ABBREVIATIONS

ACRONYMS & ABBREVIATIONS

AFS	American Foundry Society	
ARDEC	(US) Army Armament Research, Development and Engineering Center	
CARB	California Air Resources Board	
CO2	Carbon Dioxide	
CO	Carbon Monoxide	
CERP	Casting Emission Reduction Program	
CISA	Casting Industry Suppliers Association	
СРМ	Condensable Particulate Matter	
СТМ	Conditional Testing Method	
CRADA	Cooperative Research and Development Agreement	
DOD	Department of Defense	
DOE	Department of Energy	
EC	Elemental Carbon	
HC	Hydrocarbon	
CH ₄	Methane	
NOx	Nitrogen Oxides	
OC	Organic Carbon	
PM	Particulate Matter	
PCS	Pouring, Cooling, Shakeout	
SO ₂	Sulfur Dioxide	
TGOC	Total Gaseous Organic Concentration	
USCAR	United States Council for Automotive Research	
US EPA	United States Environmental Protection Agency	
WBS	Work Breakdown Structure	
XRF	X-Ray Fluorescence	